High-dimensional simultaneous inference with the bootstrap

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comments on: High-dimensional simultaneous inference with the bootstrap

Weprovide comments on the article “High-dimensional simultaneous inference with the bootstrap” by Ruben Dezeure, Peter Buhlmann and Cun-Hui Zhang.

متن کامل

Bootstrap Inference in Econometrics

The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas of bootstrap inference. The paper discusses Monte Carlo tests, several types of bootstrap test, an...

متن کامل

Bayesian inference and the parametric bootstrap.

The parametric bootstrap can be used for the efficient computation of Bayes posterior distributions. Importance sampling formulas take on an easy form relating to the deviance in exponential families, and are particularly simple starting from Jeffreys invariant prior. Because of the i.i.d. nature of bootstrap sampling, familiar formulas describe the computational accuracy of the Bayes estimates...

متن کامل

Inference of high-dimensional linear models with time-varying coefficients

We propose a pointwise inference algorithm for high-dimensional linear models with time-varying coefficients. The method is based on a novel combination of the nonparametric kernel smoothing technique and a Lasso bias-corrected ridge regression estimator. Due to the non-stationarity feature of the model, dynamic bias-variance decomposition of the estimator is obtained. With a bias-correction pr...

متن کامل

High Dimensional Inference with Random Maximum A-Posteriori Perturbations

In this work we present a new approach for high-dimensional statistical inference that is based on optimization and random perturbations. This framework injects randomness to maximum a-posteriori (MAP) predictors by randomly perturbing its potential function. When the perturbations are of low dimension, sampling the perturb-max prediction is as efficient as MAP optimization. A classic result fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TEST

سال: 2017

ISSN: 1133-0686,1863-8260

DOI: 10.1007/s11749-017-0554-2